sábado, 22 de noviembre de 2008

Chistes matemáticos

Guía de bolsillo de la ciencia moderna.

- Si es verde o repta, es Biología.
- Si huele mal, es Química.
- Si no funciona, es Física.
- Si no se entiende es Matemáticas.
- Si no tiene sentido, es Economía o Sicología.


Una vaca inteligente...
Entra un alumno en clase con una vaca, y el profe le dice. - oiga, pero usted dónde cree que va?
- pero profesor, es que esta vaca sabe matemáticas
- sí, hombre, sí, a ver, que diga una letra griega
- mu, dice la vaca
El profesor monta en colera y los echa con cajas destempladas.
Al salir, la vaca se vuelve al alumno.
- me parece que tenía que haber dicho alfa...

Geometría Analítica

MATERIA:


“GEOMETRÍA ANALÍTICA”




PROFESORA

LILIA BEATRIZ DORANTES ÁVILA
Licenciada en Informática
Aspirante grado maestra




ALUMNA:

ARGELIA BALBINA ROSADO CECONETT.




Geometría analítica

Se le conoce como geometría analítica al estudio de ciertos objetos geométricos mediante técnicas básicas del análisis matemático y del álgebra. Se podría decir que es el desarrollo histórico que comienza con la geometría cartesiana y concluye con la aparición de la geometría diferencial con Gauss y más tarde con el desarrollo de la geometría algebraica.
Lo novedoso de la Geometría Analítica es que permite representar figuras geométricas mediante fórmulas del tipo f(x,y) = 0, donde f representa una función. En particular, las rectas pueden expresarse como ecuaciones polinómicas de grado 1 (v.g.: 2x + 6y = 0) y las circunferencias y el resto de cónicas como ecuaciones polinómicas de grado 2 (v.g.: la circunferencia x2 + y2 = 4, la hipérbola xy = 1 ).
Contenido
1 Construcciones fundamentales.
1.1 Localización de un punto en el plano cartesiano.
1.2 Ecuaciones de la recta en el plano
1.2.1 Rectas que no cortan al eje de ordenadas
1.2.2 Rectas que no cortan al eje de las abscisas.
1.2.3 Rectas oblicuas
1.3 Cónicas
1.4 Construcciones en el espacio tridimensional.
2 Clasificación de la Geometría Analítica dentro de la Geometría.
3 Historia de la geometría analítica.
4 Véase también
5 Enlaces externos
Construcciones fundamentales.
En un sistema de coordenadas cartesianas, un punto del plano queda determinado por dos números, que son la abscisa y la ordenada del punto, de forma que, a todo punto del plano corresponden siempre dos números reales ordenados (abscisa y ordenada), y recíprocamente, a un par ordenado de números corresponde un único punto del plano.
Consecuentemente el sistema cartesiano establece una correspondencia biunívoca entre un concepto geométrico como es el de los puntos del plano y un concepto algebraico como son los pares ordenados de números. Esta correspondencia constituye el fundamento de la Geometría Analítica.
Con la Geometría Analítica se puede determinar figuras geométricas planas por medio de ecuaciones e inecuaciones con dos incógnitas. Éste es un método alternativo de resolución de problemas, o cuando menos nos proporciona un nuevo punto de vista con el cual poder atacar el problema.
Localización de un punto en el plano cartesiano.

En un plano traza dos rectas perpendiculares (ejes) —que por convenio se trazan de manera que una de ellas sea horizontal y la otra vertical—, y cada punto del plano queda unívocamente determinado por las distancias de dicho punto a cada uno de los ejes, siempre y cuando se dé también un criterio para determinar sobre qué semiplano determinado por cada una de las rectas hay que tomar esa distancia, criterio que viene dado por un signo. Ese par de números, las coordenadas, quedará representado por un par ordenado (x,y), siendo x la distancia a uno de los ejes (por convenio será la distancia al eje vertical) e y la distancia al otro eje (al horizontal).
En la coordenada x, el signo positivo (que suele omitirse) significa que la distancia se toma hacia la derecha del eje horizontal (eje de las abscisas), y el signo negativo (nunca se omite) indica que la distancia se toma hacia la izquierda. Para la coordenada y, el signo positivo (también se suele omitir) indica que la distancia se toma hacia arriba del eje vertical (eje de ordenadas), tomándose hacia abajo si el signo es negativo (tampoco se omite nunca en este caso). A la coordenada x se la suele denominar abscisa del punto, mientras que a la y se la denomina ordenada del punto.
Los puntos del eje de abscisas tienen por lo tanto ordenada igual a 0, así que serán de la forma (x,0), mientras que los del eje de ordenadas tendrán abscisa igual a 0, por lo que serán de la forma (0,y).
El punto donde ambos ejes se cruzan tendrá por lo tanto distancia 0 a cada uno de los ejes, luego su abscisa será 0 y su ordenada también será 0. A este punto —el (0,0)— se le denomina origen de coordenadas.

Ecuaciones de la recta en el plano

Una recta en el plano se representa con la función lineal de la forma:










como expresión general, si bien podemos distinguir dos casos particulares. Si una recta no corta a uno de los ejes, será porque es paralela a él. Como los dos ejes son perpendiculares, si no corta a uno de ellos forzosamente ha de cortar al otro (siempre y cuando la función sea continua para todos los reales). Tenemos pues dos casos:


Rectas que no cortan al eje de ordenadas

Estas rectas son paralelas a dicho eje y se denominan rectas verticales. El punto de corte con el eje de abscisas es el punto (x0,0). La ecuación de dichas rectas es:






Rectas que no cortan al eje de las abscisas.

Estas rectas son paralelas a dicho eje y se denominan rectas horizontales. El punto de corte con el eje de ordenadas es el punto (0,y_0). La ecuación de dichas rectas es:
y = y_0 \,
>







Rectas oblicuas
Cualquier otro tipo de recta recibe el nombre de recta oblicua. En ellas hay un punto de corte con el eje de abscisas (a,0) y otro punto de corte con el eje de ordenadas (0,b). El valor a recibe el nombre de abscisa en el origen, mientras que el b se denomina ordenada en el origen.


Cónicas

El resultado de la intersección de la superficie de un cono, con un plano, da lugar a lo que se denominan Sección cónica, que son: la Parábola, la Elipse y la Circunferencia como caso particular y la Hipérbola







La Parábola (Figura A) en el plano tiene por formula:




La Elipse (Figura B) centrada de eje a y b tiene por expresión:






Si los dos ejes son iguales y los llamamos c:







el resultado es una circunferencia:





La Hipérbola (Figura C) tiene por expresión:






Construcciones en el espacio tridimensional.

Los razonamientos sobre la construcción de los ejes coordenados son igualmente válidos para un punto en el espacio y una terna ordenada de números, sin más que introducir una tercera recta perpendicular a los ejes X e Y: el eje Z. Sin embargo no hay análogo al importantísimo concepto de pendiente de una recta.
Clasificación de la Geometría Analítica dentro de la Geometría.
Desde el punto de vista de la clasificación de Klein de las geometrías (el Programa de Erlangen), la geometría analítica no es una geometría propiamente dicha.
Desde el punto de vista didáctico, la Geometría Analítica resulta un puente indispensable entre la geometría euclidiana y otras ramas de la matemática y de la propia geometría, como son el propio análisis matemático, el álgebra lineal, la geometría afín, la geometría euclidiana, la geometría diferencial o la geometría algebraica.
Historia de la geometría analítica.
Existe una cierta controversia sobre la verdadera paternidad de este método. Lo único cierto es que se publica por primera vez como "Geometría Analítica", apéndice al "Discurso del método", de Descartes, si bien se sabe que Pierre de Fermat conocía y utilizaba el método antes de su publicación por Descartes. Aunque Omar Khayyam ya en el siglo XI utilizara un método muy parecido para determinar ciertas intersecciones entre curvas, es imposible que alguno de los citados matemáticos franceses tuvieran acceso a su obra.
El nombre de Geometría Analítica corrió parejo al de Geometría Cartesiana, siendo ambos indistinguibles. Hoy en día, paradójicamente, se prefiere denominar Geometría Cartesiana al apéndice del Discurso del método, mientras que se entiende que Geometría Analítica comprende no sólo a la Geometría Cartesiana (en el sentido que acabamos de citar, es decir, al texto apéndice del Discurso del método), sino también todo el desarrollo posterior de la Geometría que se base en la construcción de ejes coordenados y la descripción de las figuras mediante funciones —algebraicas o no—, hasta la aparición de la Geometría Diferencial de Gauss (decimos paradójicamente porque se usa precisamente el término Geometría Cartesiana para aquello que el propio Descartes bautizó como Geometría Analítica). El problema es que durante ese periodo no existe una diferencia clara entre Geometría Analítica y Análisis Matemático —esta falta de diferencia se debe precisamente a la identificación hecha en la época entre los conceptos de función y curva—, por lo que resulta a veces muy difícil intentar determinar si el estudio que se está realizando corresponde a una u otra rama.
La Geometría Diferencial de curvas sí que permite un estudio mediante un sistema de coordenadas, ya sea en el plano o en el espacio tridimensional. Pero en el estudio de las superficies, en general, aparecen serios obstáculos. Gauss salva dichos obstáculos creando la Geometría Diferencial, y marcando con ello el fin de la Geometría Analítica como disciplina. Es con el desarrollo de la geometría algebraica cuando se puede certificar totalmente la superación de la Geometría Analítica.
Es de puntualizar que la denominación de analítica dada a esta forma de estudiar la geometría provocó que la anterior manera de estudiarla (es decir, la manera axiomático-deductiva sin la intervención de coordenadas) se terminara denominando, por oposición, geometría sintética, debido a la dualidad análisis-síntesis.
Actualmente el término sólo es usado en enseñanzas medias o en carreras técnicas en las que no se realiza un estudio profundo de la Geometría.